Multihydrido-complexes of Osmium By P. G. Douglas and B. L. Shaw* (School of Chemistry, The University, Leeds LS2 9JT) Summary Multihydrido-complexes of osmium of the types OsH_4L_3 and OsH_6L_2 , L= tertiary phosphine or tertiary arsine, have been synthesised. TREATMENT of mer-[OsCl₃(PMe₂Ph)₃]¹ with NaBH₄ in ethanol gives [OsH₄(PMe₂Ph)₃] as colourless crystals, m.p. as part of a series; i.e. $[WH_6(PR_3)_3]$, $[ReH_5(PR_3)_3]$, $[OsH_4(PR_3)_3]$, and $[IrH_3(PR_3)_3]$ although the iridium complexes exist as fac- and mer-isomers with complex n.m.r. spectra which have so far not been interpreted. N.m.r. data for the PMe₂Ph complexes of W, Re, and Os are given in the Table and show regular changes. N.m.r. data for [WH₆(PMe₂Ph)₃], [ReH₅(PMe₂Ph)₃], and [OsH₄(PMe₂Ph)₃], in benzene | | Hydride resonance | | Methyl resonance | | |--|-------------------|-----------|------------------|-------------------------| | | τ | J(PH) Hz. | au | $^2J(PH) + ^4J(PH) Hz.$ | | $[WH_6(PMe_2Ph)_3]$ | 11.94 | 36.9 | $8 \cdot 25$ | 7.8 | | [ReH ₅ (PMe ₂ Ph) ₃] | $16 \cdot 12$ | 14.2 | 8.33 | 7.2 | | $[OsH_4(PMe_2Ph)_3]$ | 18.81 | 9.8 | 8.37 | 6.5 | $80-81^{\circ}$. The complex shows a high field 1:3:3:1quartet in the ¹H n.m.r. spectrum corresponding to a rapid intramolecular inversion process making all the hydrogens equivalent. A similar behaviour is observed with [WHa-(PMe2Ph)3]2 and in various multihydrido-rhenium-tertiary phosphine complexes.^{3,4} Treatment of mer-[OsCl₃(PMe₂-Ph)₃] with Cl₂ in visible light gives trans-[OsCl₄(PMe₂Ph)₂] and this with NaBH4 in ethanol gives [OsH6(PMe2Ph)2] as an unstable oil. The ¹H n.m.r. spectrum shows a hydride 1:2:1 triplet at τ 18.60, and integration confirms the presence of six hydrogens per osmium. We have similarly made the complexes OsH₄L₃ with L = PEt₉Ph, AsEt₉Ph, AsMe, Ph, and PBu, [OsCl4(PMe, Ph)2] reacts with ligands L to give $[OsCl_3(PMe_2Ph)_2L]$ {L = PEt₂Ph, AsMe₂Ph, PPh₃, P(OMe)₂Ph, and P(OEt)₃} and these with NaBH₄-EtOH give the tetrahydrido-complexes [OsH₄-(PMe,Ph),L]. These tetrahydrido-osmium complexes can be considered The quartet hydride resonance of [OsH₄(PMe₂Ph)₃] in benzene collapses to a singlet in the presence of a few mol. per cent of CF₃CO₂H and then gradually reappears. We attribute this to the formation of [OsH₅(PMe₂Ph)₃]+ with very rapid intermolecular hydrogen exchange and then the gradual elimination of the acid as H₂. Conductimetric titration of [OsH₄(PMe₂Ph)₃] by HCl in methanol at 0° shows a sharp break in the curve after the addition of 1 mol. of acid. In EtOD the hydridic hydrogens of [OsH4-(PMe,Ph), exchange for deuterium, the exchange is catalysed by acid and completely inhibited by a base such as NBu₄ⁿ⁺ OH⁻; i.e., the exchange goes via protonation (deuteriation) of the filled non-bonding d-orbital on the osmium. Other transition metal hydrides containing tertiary phosphines, e.g., of RuII, IrIII and ReV, show similar acid catalysed hydrogen-deuterium exchange.5 (Received, March 19th, 1969; Com. 395.) - ¹ J. Chatt, G. J. Leigh, D. M. P. Mingos, and R. J. Paske, J. Chem. Soc. (A), 1968, 2636. - ² J. R. Moss and B. L. Shaw, Chem. Comm., 1968, 632. - ³ L. Malatesta, M. Freni, and V. Valenti, Gazzetta, 1964, 94, 1278. - ⁴ J. Chatt and R. S. Coffey, Chem. Comm., 1966, 545. - ⁵ A. Bright and B. L. Shaw, unpublished work.